/* For cartesian coordinate system, enter parametric equation

/* in terms of t (which will vary from 0 to 1) for x, y and z

/* For example: for a circle in x-y plane, centered at origin

/* and radius = 4, the parametric equations will be:

/* x = 4 * cos ( t * 360 )

/* y = 4 * sin ( t * 360 )

/* z = 0

/*——————————————————————-

/* z = 30*Sin(t*720*2/2)

x = (40*t + 70*Cos(t*720*17))

y = (40*t + 70*sin(t*720*17))

z = (x*cos(t*180))

**Another**

x = (40*t + 70*Cos(t*720*17))

y = (40*t + 70*sin(t*720*17))

z = (y*sin(t*180))

**Another**

x = (40*t + 70*Cos(t*720*50))

y = (40*t + 70*sin(t*720*50))

z = (y*sin(t*360))

**Another**

x = (40*exp(3*t) + 70*Cos(t*720*50))

y = (40*exp(3*t) + 70*sin(t*720*50))

z = (500*sin(t*180))

**Another**

deg=360*100

x = 13*cos(t*deg)- 13*sin(3/13* t*deg)

y = 13*cos(t*deg)- z*sin(3/13* t*deg)

z=100*t

**Another**

deg=360*100

x = z*cos(t*deg)+ 13*sin(3/13* t*deg)

y = z*cos(t*deg)- 13*sin(3/13* t*deg)

z=100*t

**More**

deg=360*100

x = 13*cos(t*deg)+ z*sin(3/13* t*deg)

y = 13*cos(t*deg)- z*sin(3/13* t*deg)

z=100*t

**More**

deg=360*500

x = 13*cos(t*deg)+ z*sin(3/13* t*deg)

y = 13*cos(t*deg)- 10*sin(3/13* t*deg)

z=100*t

**More**

deg=360*500

x = 13*cos(t*deg)+ z*sin(3/13* t*deg)

y = z*cos(t*deg)+ 10*sin(3/13* t*deg)

z=100*t

**Special Curve, Observe the sharp BENDS**

deg=360*500

x = z*cos(t*deg)+ 8*cos(3/13* t*deg)

y = 8*sin(t*deg)+ z*sin(3/13* t*deg)

z=100*t

**More**

deg=360*500

x = 8*cos(t*deg)+ z*cos(3/13* t*deg)

y = z*sin(t*deg)+ 8*sin(3/13* t*deg)

z=100*t

this is very good for you, ybg

Thank you, I have recently been searching for information about this topic for ages and yours is the best I have discovered so far.

What is captcha code?, pls provide me captcha code codes or plugin, Thanks in advance.

35

This is such a great resource that you are providing and you give it away for free. I enjoy seeing websites that understand the value of providing a prime resource for free. I truly loved reading your post. Thanks!

I’d be inclined to give carte blanche with you here. Which is not something I usually do! I love reading a post that will make people think. Also, thanks for allowing me to comment!

This actually answered my downside, thanks!