Parametric Curves

/* For cartesian coordinate system, enter parametric equation
/* in terms of t (which will vary from 0 to 1) for x, y and z
/* For example: for a circle in x-y plane, centered at origin
/* and radius = 4, the parametric equations will be:
/*           x = 4 * cos ( t * 360 )
/*           y = 4 * sin ( t * 360 )
/*           z = 0
/*——————————————————————-
/* z = 30*Sin(t*720*2/2)
x = (40*t + 70*Cos(t*720*17))
y = (40*t + 70*sin(t*720*17))
z = (x*cos(t*180))

Another
x = (40*t + 70*Cos(t*720*17))
y = (40*t + 70*sin(t*720*17))
z = (y*sin(t*180))

Another
x = (40*t + 70*Cos(t*720*50))
y = (40*t + 70*sin(t*720*50))
z = (y*sin(t*360))

Another
x = (40*exp(3*t) + 70*Cos(t*720*50))
y = (40*exp(3*t) + 70*sin(t*720*50))
z = (500*sin(t*180))

Another
deg=360*100
x = 13*cos(t*deg)- 13*sin(3/13* t*deg)
y = 13*cos(t*deg)- z*sin(3/13* t*deg)
z=100*t

Another
deg=360*100
x = z*cos(t*deg)+ 13*sin(3/13* t*deg)
y = z*cos(t*deg)- 13*sin(3/13* t*deg)
z=100*t

More
deg=360*100
x = 13*cos(t*deg)+ z*sin(3/13* t*deg)
y = 13*cos(t*deg)- z*sin(3/13* t*deg)
z=100*t

More
deg=360*500
x = 13*cos(t*deg)+ z*sin(3/13* t*deg)
y = 13*cos(t*deg)- 10*sin(3/13* t*deg)
z=100*t

More
deg=360*500
x = 13*cos(t*deg)+ z*sin(3/13* t*deg)
y = z*cos(t*deg)+ 10*sin(3/13* t*deg)
z=100*t

Special Curve, Observe the sharp BENDS
deg=360*500
x = z*cos(t*deg)+ 8*cos(3/13* t*deg)
y = 8*sin(t*deg)+ z*sin(3/13* t*deg)
z=100*t

More
deg=360*500
x = 8*cos(t*deg)+ z*cos(3/13* t*deg)
y = z*sin(t*deg)+ 8*sin(3/13* t*deg)
z=100*t

This entry was posted in Uncategorized and tagged , . Bookmark the permalink.

6 Responses to Parametric Curves

  1. this is very good for you, ybg :)

  2. student loan says:

    Thank you, I have recently been searching for information about this topic for ages and yours is the best I have discovered so far.

  3. What is captcha code?, pls provide me captcha code codes or plugin, Thanks in advance.
    35

  4. auto shop says:

    This is such a great resource that you are providing and you give it away for free. I enjoy seeing websites that understand the value of providing a prime resource for free. I truly loved reading your post. Thanks!

  5. I’d be inclined to give carte blanche with you here. Which is not something I usually do! I love reading a post that will make people think. Also, thanks for allowing me to comment!

  6. This actually answered my downside, thanks!

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>